3,367 research outputs found

    Monopole track characteristics in plastic detectors

    Get PDF
    Total and restricted energy loss rates were calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted energy loss model is used to estimate the appearance of a monopole track in plastic detectors. These results should be useful for the design and analysis of monopole experiments

    Near threshold response of a wave shifted Cerenkov radiator to heavy ions

    Get PDF
    The response of Pilot 425 to heavy ions with energies less than 600 MeV/amu beta approximately 0.8 is examined both theoretically and experimentally. Measurements are presented from an experiment which employed a Ne-20 beam at many energies below 575 MeV/amu. The signal is assumed to come from three sources: (1) Cerenkov light from the heavy ion, (2) Cerenkov light from secondary electrons, and (3) scintillation of the radiator. It is found that the effective index of refraction is 1.518 and that scintillation is present at a level of approximately 2.7 percent of the Cerenkov signal for beta = 1 for Ne-20. The first of these values differs from values previously quoted in the literature

    High resolution Cerenkov and range detectors for balloon-borne cosmic-ray experiment

    Get PDF
    A combination of an active Cerenkov detector and passive range detectors is proposed for the high resolution measurement of isotopic composition in the neighborhood of iron in the galactic cosmic rays. A large area (4,300 sq cm) Cerenkov counter and passive range detectors were tested. Tests with heavy ions (2.1 GeV/amu C-12, 289 MeV/amu Ar-40, and 594 MeV/amu Ne-20) revealed the spatial uniformity of response of the Cerenkov counter to be better than 1% peak-to-peak. Light collection efficiency is independent of projectile energy and incidence angle to within at least 0.5%. Passive Lexan track recorders to measure range in the presence of the nuclear interaction background which results from stopping particles through 0.9 interaction lengths of matter were also tested. It was found that nuclear interactions produce an effective range straggling distribution only approximately 75% wider than that expected from range straggling alone. The combination of these tested techniques makes possible high mass resolution in the neighborhood of iron

    An experiment to measure the energy spectrum of cosmic ray antiprotons from 100 to 1000 MeV

    Get PDF
    Production models were developed and the confirmation of each one had significant astrophysical impact. These include radical modifications of propagation models, cosmic ray antiprotons injection from neighboring domains of antimatter, p production by evaporating primordial black holes, and cosmic ray p's as annihilation products of supersymmetry particles that might make up the dark dynamical mass of the Galaxy. It is that p's originating from supersymmetric parents might have distinct spectral features that would survive solar modulation; in one model, higgsino annihilation proceeds through the bb quark-antiquark channel, producing a spectral bump at approx. 0.3 GeV in the p spectrum

    Search for exotic contributions to atmospheric neutrino oscillations

    Full text link
    The energy spectrum of neutrino-induced upward-going muons in MACRO was analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant effect. The data disfavor these possibilities even at a sub-dominant level; stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter Δv<6×1024|\Delta v| < 6 \times 10^{-24} at sin2θv\sin 2{\theta}_v = 0 and Δv<2.5÷5×1026|\Delta v| < 2.5 \div 5 \times 10^{-26} at sin2θv\sin 2{\theta}_v = ±\pm1. The limits can be re-interpreted as bounds on the Equivalence Principle violation parameters.Comment: Presented at the 29th I.C.R.C., Pune, India (2005

    Background Rejection in the DMTPC Dark Matter Search Using Charge Signals

    Full text link
    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the ee^- rejection factor of 5.6×1065.6\times10^{-6} for recoils with energies between 40 and 200 keVee_{\mathrm{ee}}. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc
    corecore